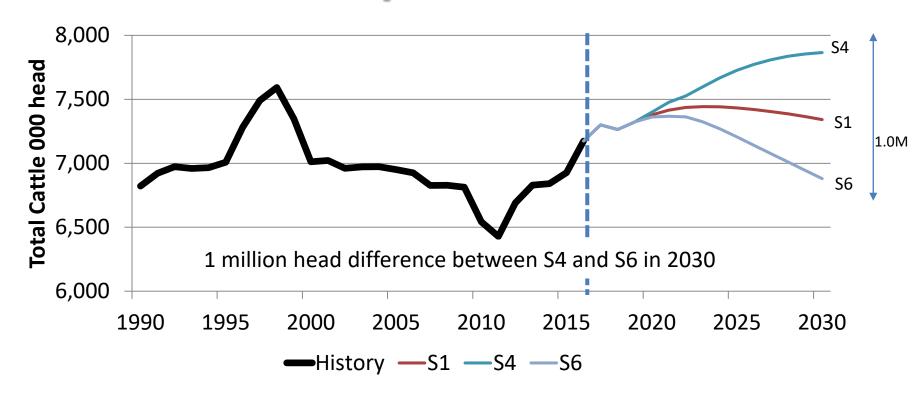
Sustainability risks to the Agri sector

Professor Frank O'Mara, Director of Research, Teagasc

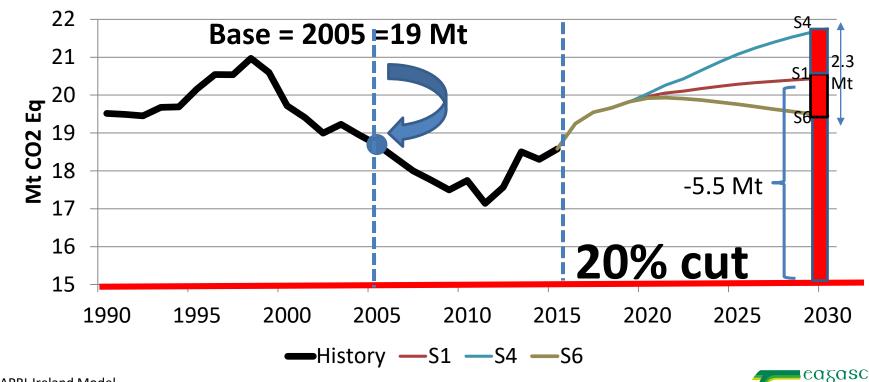
ICOS conference

November 7th 2018



2018 – a very difficult year

- Several extreme weather events ... indicative of Climate Change (CC)
- Challenging fodder situation but highly variable
- Substantial additional costs; reduced incomes; and stress
- What can agriculture do to combat CC?


Total Cattle Population: Scenarios

Source: FAPRI-Ireland Model

GHG emissions with NO mitigation actions

Source: FAPRI-Ireland Model

Three Mitigation Pathways to 2030

- 1. Reduce Agricultural Methane and Nitrous Oxide
 - lower emissions from animals, animal waste and fertiliser
- 2. Sequester Carbon (LULUCF Landuse, Landuse change and Forestry)
 - Via land use change and forestry
- 3. Energy efficiency & biofuels and bioenergy production
 - to reduce overall energy usage on farms
 - to displace fossil fuel emissions

1. Agricultural Abatement

Saving

2030

Measure		Mean ann. saving	
		2021-30	
1.	Improved Beef Maternal Traits (CH ₄)	0.03 Mt	
2.	Beef Genetics: live-weight gain (CH ₄)	0.06 Mt	
3.	Dairy EBI (CH ₄)	0.43 Mt	
4.	Extended grazing (CH ₄)	0.07 Mt	
5.	Nitrogen-use efficiency (N ₂ O)	0.10 Mt	
6.	Improved animal health (CH ₄)	0.10 Mt	
7.	Sexed Semen (CH ₄)	0.02 Mt	
8.	Inclusion of Clover in pasture (N ₂ O)	0.07 Mt	
9.	Change Fertiliser Type* (N ₂ O)	0.52 Mt	
10.	Reduced crude protein in pigs* (N ₂ O)	0.05 Mt	
11.	Draining wet mineral soils (N ₂ O)	0.20 Mt	
12.	Slurry amendments* (CH ₄)	0.03 Mt	
13.	Adding Fatty Acids to dairy diets	(CH ₄) 0.03 Mt	
14. To	Low-emission slurry spreading* (N ₂ O tal) 0.12 Mt 1.85	

^{*} Double dividend as it also reduces ammonia emissions

2. Land-Use Sequestration

Measure	Mean ann. saving	2030	
	2021-2030		
15. Grassland Mgt.	0.26 Mt		
16. Water table mgt. of org. soils	0.44 Mt		
17. Forestry	2.10 Mt		
18. Tillage Mgt – Cover crops	0.10 Mt		
19. Tillage Mgt – Straw incorp.	0.06 Mt		
Total	2.96	3.89	

3. Energy Efficiency, Bioenergy and Biofuels

Measure

20.	Energy	efficiency	on farm
-----	--------	------------	---------

- 21. Wood Biomass* for energy
- 22. SRC & Miscanthus for Heat
- 23. SRC for Electricity
- 24. Anaerobic Digestion**
- 25. Biomethane

Total

Mean ann. Saving saving 2030

2021-30

0.03 Mt

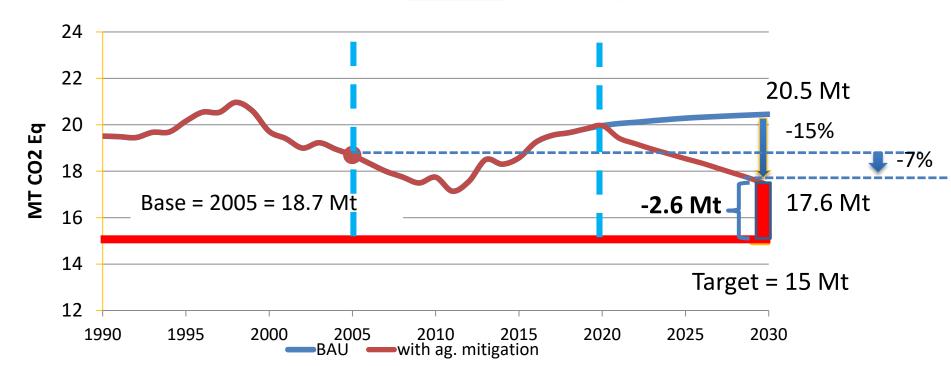
0.76 Mt

0.11 Mt

0.10 Mt

0.22 Mt

0.15 Mt


1.37

^{*}thinnings and sawmill residues

^{**}slurry and grass for CHP

Impacts on 2030 GHG targets S1 Scenario with mitigation

National NH₃ emissions

Most Promising NH₃ Measures

		kT NH ₃ abated
•	Stabilised urea	7.7
•	Trailing shoe dairy	2.7
•	Trailing shoe non-dairy	1.7
•	Alt. time manure dairy	1.5
•	Crude protein pigs	1.3
•	Alt. time manure non-dairy	0.91
•	Cover stores pigs	0.68
•	Increase NUE (nitrogen use efficiency)	0.57
•	Slurry additives dairy or pigs	0.57

Conclusions

- WARNING: Across the world there is a poor take up of GHG mitigation actions by the ag sector
- Without mitigation, Ag GHG and ammonia emissions are likely to increase
 - Mainly due to increased dairy production
 - Which would lead to a larger cattle population
- Significant mitigation potential exists
 - But these solutions exist on paper only
 - Significant advisory input required <u>plus</u>
 - Policy measures to encourage uptake of mitigation measures

